Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells
نویسندگان
چکیده
Our previous work reported that KCa3.1 (IKCa) channels are expressed in CA1 hippocampal pyramidal cells and contribute to the slow afterhyperpolarization that regulates spike accommodation in these cells. The current report presents data from single cell RT-PCR that further reveals mRNA in CA1 cells that corresponds to the sequence of an IKCa channel from transmembrane segments 5 through 6 including the pore region, revealing the established binding sites for 4 different IKCa channel blockers. A comparison of methods to internally apply the IKCa channel blocker TRAM-34 shows that including the drug in an electrode from the onset of an experiment is unviable given the speed of drug action upon gaining access for whole-cell recordings. Together the data firmly establish IKCa channel expression in CA1 neurons and clarify methodological requirements to obtain a block of IKCa channel activity through internal application of TRAM-34.
منابع مشابه
IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons.
Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral functions, yet the channel that underlies ...
متن کاملDistribution of slow AHP channels on hippocampal CA1 pyramidal neurons.
This work was designed to localize the Ca(2+)-activated K(+) channels underlying the slow afterhyperpolarization (sAHP) in hippocampal CA1 pyramidal cells. Cell-attached patches on the proximal 100 microm of the apical dendrite contained K(+) channels, but not sAHP channels, activated by backpropagating action potentials. Amputation of the apical dendrite approximately 30 microm from the soma, ...
متن کاملIK1 channels do not contribute to the slow afterhyperpolarization in pyramidal neurons
In pyramidal neurons such as hippocampal area CA1 and basolateral amygdala, a slow afterhyperpolarization (sAHP) follows a burst of action potentials, which is a powerful regulator of neuronal excitability. The sAHP amplitude increases with aging and may underlie age related memory decline. The sAHP is due to a Ca(2+)-dependent, voltage-independent K(+) conductance, the molecular identity of wh...
متن کاملEffect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat
Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کامل